TDA Progress Report 42-79

July-September 1984

A Very Efficient Transfer Function Bounding Technique
on Bit Error Rate for Viterbi Decoded,
Rate 1/N Convolutional Codes
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For rate 1/N convolutional codes, a recursive algorithm for finding the transfer func-
tion bound on bit error rate (BER) at the output of a Viterbi decoder is described. This
technique is very fast and requires very little storage since all the unnecessary operations
are eliminated, Using this technique, we find and plot bounds on the BER performance of
known codes of rate 1/2 with K < 18, rate 1/3 with K < 16, and rate 1/4 with K < 14.
When more than one reported code with the same parameters is known, we select the
code that minimizes the required signal-to-noise ratio for a desired bit ervor rate of 1075,
This criterion of determining goodness of a code had previously been found to be more
useful than the maximum free distance criterion and was used in the code search proce-
dures of very short constraint length codes. This very efficient technique can also be used

Jor searches of longer constraint length codes.

l. Introduction

The best decoding method for convolutional codes is
maximum-ikelihood (ML) decoding (often called Viterbi de-
coding) (Refs, 1 and 2), which is considered to be practical
only for “short” constraint length codes. For longer con-
straint length codes sequential decoding is often employed
(Ref. 2). However, due to rapidly developing hardware tech-
nologies, the length which is considered to be ‘“‘short” has
been increasing. Also, the bit error rate (BER) with sequen-
tial decoding may be lower bounded by the BER with ML
decoding. Hence, finding the performance of Viterbi-decoded
long constraint length codes is useful, even if construction of
Viterbi decoders for such length codes is impractical with
today’s technologies.

The BER at the Viterbi decoder output is well bounded by
the well-known transfer function bound (Refs. 1 and 2). For
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this bound, matrix inversion is required (Refs. 2 and 3). Ac-
cordingly, a large amount of computer storage and a substan-
tial amount of computing time have been required. In this
report, for rate 1/N convolutional codes, we present a re-
cursive algorithm for finding the transfer function bound.
By eliminating all the unnecessary computations (e.g.,
multiplication-by-zero, etc.), we can perform the matrix
inversion with vector operations only. Hence, this technique
is very fast computationally, and it furthermore requires only
a very small amount of computer memory storage. After a
brief review of preliminaries in the next section, the algorithm
is described in Section IIIL.

A large number of good rate 1/V convolutional codes have
been found and reported (Refs. 4 to 7). In those code search
procedures, maximum free distance (d;) or the maximum d;
together with minimizing the first few weight spectral compo-
nents (number of adversaries) were used for determining the




goodness of a code. More recently, in Ref. 8, we introduced a
better criterion of “minfmum required signal-to-noise ratio
(SNR) for a given desired BER” and used this criterion for
code searches of rate 1/N codes with very short constraint
length (K < 7). For searches of longer constraint length codes,
this technique will be used for finding BER performance
b9unds.

In the last section, we give the BER performance of some
rate 1/N codes which require minimum SNR for desired BER
of 10~ among codes reported in Refs. 4 to 8. (For K = 8, we
expect that there may be better codes with our criterion.) For
the calculations, we assume binary antipodal signaling over the
additive white Gaussian noise (AWGN) channel with no chan-
nel output quantization. Such codes are tabulated in Table 1.
With a discussion on the accuracy of the bound, we conclude
that, as compared to the series expansion approximation to
the transfer function bound, our method is shown to be pref-

* erable in two aspects: (1) it gives uniform accuracy and (2) it
is more suitable for-comparison of the codes.

. Preliminaries

In this section a general background for the transfer func-
tion bound is briefly reviewed, mainly to define necessary
notation. A typical nonsystematic, constraint length K, rate
1/N convolutional encoder is shown in Fig. 1. The connection
box with mod-2 adders is often represented by an V X X bi-
nary matrix G, which is.called the code generator matrix. The
n-th bit in #-th output vector y? (see Fig. ) forn=1,2, ...,
Nandt=1,2,...is:

K-1
¥ = mod Z G(n, k)-x"",Z} (1)
k=0 .

where mod{a, b}is the remainder when a is divided by b,
xt € {0, 1}is the encoder input sequence for t=1,2,...,and
x? = 0 for ¢ < 0 by convention. The code rate r [information
bits/channel bit] is 1/N. The “present” state at time ¢, S%, is
defined as:S? = (xt~K*1 ... x?-1), and we denote S by {, if

»
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xtk gkl = (2)

S
il
-

Hence the state space is {0,1,2,...,M-1}, where M = 2K-14g
the size of the state space. Suppose S? is i. Then by the defini-
tion of state, the next state j is given by:

j = x*+mod{2i, M2} 3)

To find a transfer function, one often uses a state diagram
where nodes represent states and directed branches represent
state transitions. Let W(@,0), ij = 0,1, . .., M-1, be the matrix
representation of the branch metric on the directed branch
from state i to state 7. When such a transition exists, W(ij) is
given by the product of D to the power of the Hamming
weight of the corresponding output vector and Z raised to the
Hamming weight of the input bit, when a binary input channel
is used. (D and Z are dummy variables. See Eq. (5).) While,
W(i,7) = 0 when there is no such transition.. As an'illustration,
a K = 4, r = 1/5 convolutional encoder is shown in Fig. 2. For
this code, G and W are given below and the state diagram is
shown in Fig. 3.

G=[1111]
1101
1101
1011
L1 001,

w=[1lDz o 0o o o 0 o0 ]
0l 0o D D2Z 0o 0 0 o0
ot 0o 0o o0 D* D2Z 0 O
o: 0 0 0 0 o D® D’z
D5I zZ 0 0 0 0 O 0
ol o D> DZ 0 0 0 0
o; 0 0 0 D® D2 0
L0{ o 0 0 o0 o0 D? D3Z_

The transfer function T(D,Z) can be represented by (Refs. 2
and 3)

TD,Z) =b-(I-A)"-c (4)

where (M - 1)-dimensional row and column vectors b and ¢
and (M - 1) X (M - 1) matrix A are portions of the M X M
matrix W, such that b(7) = W(0,7), ¢(i) = W(;,0), and A(;j) =
W(,7), where 4,j = 1,2, ..., M - 1. Here, I is the (M - )X
(M - 1) identity matrix.

The BER at the output of an ML decoder is well upper-

bounded by the following expression, called the “transfer
function bound” (Refs. 1 to 3)

BER<C - =2 T(D,Z) )
° oz D=D,,Z=1
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where the coefficient C, depends on the channel and code
used, while the Bhattacharyya bound D, depends only on the
coding channel (everything between the encoder output and
the decoder input, including decision rule or channel output
quantization). For the AWGN channel with antipodal signaling

and with no channel output quantization, C, and D, are given

by (Refs. 1 and 2)
D, =exp (E/N,) ©
and
C, = QW2 E]JN,)  exo@.EN)  (7)
where E is the received signal energy per channel symbol
which is related to the received signal energy per information

bit £ by, Eg=r E, (r = 1/N in our case). IV, is the one-sided
noise power spectral density,

0(z) = f exp (-£2/2) + dt/ 27
V-4
and d p is the free distance of the code.

. Transfer Function Bound
When the matrix (I ~ A) has an inverse, the following holds:

(a-ay' = i A* (8)
2=0
or
TD,Z) = f: b-A% ¢ 9)
=0
Let
f, = b A’ (10

which can be found recursively as

fr., =f, * A, 0=012,..;withf, 2b  (11)
Hence
TDZ) =Y, f,+¢ (12)
=0
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Let

g, = of,/oZ (13)
This also can be found recursively
oiy = Bt A+f, - AL 0=01,.. ;withg = b
(14)
where A’ = 0A/0Z and b’ = 8b/3Z.
Since 9¢/0Z = 0, we have
_a._. T(D’ Z) = i g, * c
0Z p=pz=1 |48 * D=D_, =1
(15)

Equations (4) through (15) hold for any convolutional code.
That is, for any rate /N convolutional code, we can find the
transfer function bound recursively, with a proper truncation
of Eq. (15), by performing vector-by-matrix multiplications.

For rate 1/NV codes, we can further reduce the required
computer storage and computational effort. Notice that the
matrix W has only 2M nonzero elements in special positions
(see Eq. (3) and the example). That is, for the iterations of
Egs. (11) and (14), one often performs lots of multiplication-
by-zero operations. By eliminating these unnecessary opera-
tions, we can reduce the computational burden substantially.
Also we do not have to waste storage for the zero entries in
the matrix W. Instead of the M X M matrix W, we may use the
following two M-dimensional vectors;

W) = WL

and ,7=01,...,M-1
V(i) = W([j/2] '+M/2,f)|
D=D,,Z=1
(16)
where [¢] denotes the integer part of a. Let
T = and g, = 17
. 2|D=D ,Z=1 © 7 8 pp e "
o o
Then we can iterate TQ and g, for2=1,2,... ,withE, =Eo A
(w(1),0,0,...,0), as;
F,, (=T 002 v)
Boaa (D = B (1/2) - v + Ty (1) (18)




and forj=23,...,M-1,

~

£, 0) = 5, (52D) - uG) +K, (/2] +M2) - ()
Ty G) = B, (2D - uG) + 8, (112 +M)2) - §)

+1,,, () » mod (,2) (19)

Finally, for the transfer function bound, we have a recursive
solution which requires only vector operations;

) S
2z T0.2) = {g g, (M/z)} -+ v(0)

D=D_,Z=1
° (20)

Note that we need to truncate (20) at some depth. One
may choose the stopping number L such that

L
g, M)2) < 107¢ - :2'52(114/2)} (21)

£=0

This gives 4 or more digits of accuracy for most cases of inter-
est. Also notice that if G(n,K)=1foralln=1,2,...,N, then
we need only one of u or v, since u(f) * v(j) = DV for all j.
(The same is true if G(n,1) are all n, by redefining the states in
reverse order.)

IV. Applications, Discussion, and
Conclusions

In the previous section we presented a technique for finding
the transfer function bound using only vectors. Hence we can
apply this technique for rather long constraint length codes
very efficiently. This technique was used to compute the per-
formance of reported codes in Refs. 4 through 8 for r = 1/2
codes with K < 18, r = 1/3 codes with K < 16, and r =.1/4
codes with K < 14. With a given X and r, we picked the best
code, using a criterion of minimizing required £,/N, for a
given desired BER of 10~6. Such codes are tabulated in
Table 1 and their performances are shown in Figs. 4 through 6.
The vertical lines in those figures are the computational cutoff
rate limit for the corresponding code rate (£,/N, = ~1/r * In

{21 ~ 1}). Note that the transfer function bound becomes -

loose as the operating SNR approaches the cutoff rate limit.

Notice that the code which is the best by our criterion may
not have the maximum free distance. The transfer function
bound itself is often represented by a series expansion as
(Refs. 1 and 2)

?
57 T(D.2) (22)

£
-3 ap)
p=p,z=1 [ '°
f

The first term of Eq. (22) may be used to determine the code
performance if the value of operating D, is extremely small.
However, the value of operating D, may not be so small in
practice. Hence, rather than a single term approximation, a
several-term truncated version of Eq. (22) is often used as an
approximation to the transfer functien bound. The coeffici-
ents ;s (often called “weight spectra” or “number of bit
errors in the adversaries™) are needed for such approximations.
For example, in Ref. 4, Odenwalder found the first 8 ;s for
his own codes, while in Ref. 9 Conan found the first 18 ¢;’s for
the codes in Refs. 4 and 5. The technique of reducing required
storage and computational effort described in the previous
section can be applied for finding the a;’s also. However, note
that the number of required terms for a good approximation
varies with the value of operating D, and the 4,’s themselves.
That is; a larger number of terms is required when the operat-
ing signal-to-noise ratio is small, when the code rate is low,
and/or when the values of ;s are large. As an illustration, in
Fig. 7, 8-term (dotted lines) and 18-term (dashed lines) ap-
proximations are compared with our results (solid lines) for
six codes considered in Ref. 9 with »= 1/2, 1/3, and 1/4, and
K =7 and 11, Notice that our method of finding the transfer
function bound with the truncation rule (21) provides ‘“uni-
form accuracy” for all cases considered.

Finding a,’s and using them for the performance evaluation
of a code is very useful, if enough terms are provided for an
accurate approximation. However, comparing two codes using
those a;’s may not be practical, since vector comparison is
not trivial. For example, consider the (7,1/3) case. Although
the criterion for a good code in the code search in Ref. 4 was
the maximum d,, d,= 15 codes were overlooked and a df= 14
code was found. Its transfer function bound is approximated
as

= D% +20D16 + 53D18 + 184D?0 + 555D%?2
+1961D%* + 6384D?6 + 2065508
+64598D5%° + 203027D%% + 631873D3*
+1958874D3 + 60286010
+18460857D%° +. .

3
22102

Later, a df = 15 code was found in Ref. 5 whose transfer func-
tion bound is approximated as

= 11D'5 +16D'° + 19D7 +28D'® + 55D1?
+96D?° + 169D*! +338D%? + 636D%°

d
2z T02)

117



+1276D%* + 2172D%5 +3628D%¢
+6580D%7 + 12048D2® + 20820D%°
+36358D3% + 65009D3! + 115368D32
+204997D33 + 356650D3* + 622913D%
+1097466D36 + 1924564D%7
+3356610D°8 + 5848017D%°
+10215732D%° + 17821463D* + . ..

With the values of de and a;’s only, we cannot compare the
two codes. The proper way of comparing them is substituting
* the actual value of D, for D and comparing the summations,

which is nothing but the evaluation of the transfer function
bound.

In conclusion, we have described a technique for calculat-
ing the transfer function bound on the BER at the Viterbi
decoder output which requires only vector operations for
the matrix inversion. Using this technique on previously
reported codes of some selected code rates and constraint
lengths, we determined codes which require minimum SNR
for a given desired BER of 10~6, and provided their BER per-
formance curves. As compared to the series expansion approx-
imation method, our technique is shown to be preferable,
since it gives a better approximation of the actual transfer
function bound and it can be used directly for the compari-
son of codes.
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Table 1. Some of the best known convolutional codes, which
require minimum E,/N, for desired BER of 10-6

Found in Code Generator G
& dy Ref. in octal
3,1/2) 5 4 7 ]
4, 1/2) 6 4 17 15
(5,1/2) 7 4 35 23
(6, 1/2) 8 8 77 45
(7, 1/2) 10 4 171 133
(8,1/2) 10 4 247 371
M, 1/2) 12 4 561 753
(10, 1/2) 12 7 1755 1363
(11, 1/2) 14 7 3645 2671
(12,1/2) 15 7 7173 5261
(13,1/2) 16 7 12767 16461
(14, 1/2) 16 7 22555 37457
(15, 1/2) 18 7 63121 55367
16, 1/2) 19 7 111653 145665
Qa7,1/2) 20 7 347241 246277
(18,1/2) 20 7 506477 673711
(3,1/3) 8 4 7 7 5
4, 1/3) 10 4 17 15 13
S, 1/3) 12 "4 37 33 25
(6, 1/3) 13 4 75 53 47
(7,1/3) 14 4 171 145 133
8, 1/3) 16 4 225 331 367
9, 1/3) 18 5 557 663 711
(10, 1/3) 19 6 1765 1631 1327
(11, 1/3) 22 5 2353 2671 3175
(12,1/3) 24 5 4767 5723 6265
(13,1/3) 24 ) 10533 10675 17661
(14,1/3) 25 6 37515 33457 20553
15,1/3) 26 6 77233 67175 41327
(16, 1/3) 28 6 172465 156371 102657
3,14 10 8 7 7 5 5
4, 1/4) 12 8 17 15 13 11
(5,1/4) 15 8 37 35 25 23
6, 1/4) 18 8 77 73 55 45
(7, 1/4) 20 8 175 151 133 117
(8, 1/4) 22 5 235 275 313 357
9, 1/4) 23 5 463 535 733 745
(10, 1/4) 27 5 1117 1365 1633 1653
(11, 1/4) 29 5 2327 2353 2671 3175
(12, 1/4) 32 5 4767 5723 6265 7455
(13, 1/4) 33 5 11145 12477 18573 16727
(14, 1/4) 36 5 21113 23175 35527 35537
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Fig. 1. A nonsystematic, constraint length K, rate 1/N convolutional encoder structure

Fig. 2. A (4,1/5) convolutional encoder structure
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2.2 . . . . . 4.6

Fig. 4. Transfer function bounds on BER at the output of Viterbi decoder with best known rate 1/2 codes
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Fig. 5. Transfer function bounds on BER at the output of Viterbi decoder with best known rate 1/3 codes
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Fig. 6. Transfer function bournids on BER at the output of Viterbl decoder with best known fate 1/4 codes




|°910 (BER)

~4,0

a9 T T T T T T T T T T T T
N
N OUR APPROXIMATION
- \\ — — —— 18-TERM APPROXIMATION
-..5\ N A R A A NN . R T **** B-TERM APPROXIMATION
EN
= RN
N
'... (71 1/2)
(7, 1/3)
7, 1/4
L (1, 1/3)
(1, 174
| | 1 i | | |
1.8 2.2 2,6 3,0

Eb/No' dB

Flg. 7. Comparisons of approximations on transfer function bounds
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